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Flexible Parametric Survival Cure Rate Models for Pulmonary 
Tuberculosis Data
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Ab s t r Ac t
This article mainly aims to compare Flexible parametric cure rate models using relative survival function and to predict cure fraction for 
tuberculosis (TB) data. In survival analysis, the Cox proportional-hazards model of time-to-event data is effective, but still there may be some 
benefits of using parametric models than non-parametric or semi-parametric models. Sometimes, it happens that a certain fraction of the data 
corresponds to subjects who are never involved in the event when assessing time-to-event data. Survival models that take this characteristic 
into account are typically referred to as cure rate models. Hence, in this article the parametric cure model to time-to-event (sputum conversion) 
on pulmonary TB data with the survival time distribution such as Weibull, Gamma, Exponential and Lognormal is developed. The objective of 
this article is to compare cure rate models to find the best model fitting survival time using the relative survival function and to predict cure 
fraction of TB data. The data were analyzed using “R-4.0.2” and STATA 15.0.0 statistical tools.
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In t r o d u c t I o n
Survival analysis is a collection of statistical procedures for data 
analysis for which the outcome variable of interest is time until an 
event occurs. Time can be days, weeks, months or years and event 
can be death, recurrence, and incidence relapse from remission. 
The term survival analysis pertains to a statistical approach to take 
into account the amount of time an experimental unit contributes 
to a study. It is the study of time between entry into observation 
and subsequent event.

In time-to-event research, cure models are used when not 
all people are expected to undergo the event of interest, or when 
the survival of the considered people exceeds the same level as 
the general population. The cure rate parametric models are 
a type of parametric model of survival in which a proportion of 
study participants or patients who will not be experiencing the 
defined event is presumed to occur. In a mixture cure model, 
these “cured” and “uncured” subjects are modelled separately with 
the cured individuals subject to no excess risk and the uncured 
individuals subject to excess risk modelled using a parametric 
survival distribution. A  parametric survival distribution is scaled 
in a non-mixture model so that survival reaches the cure fraction 
asymptotically. Using parametric cure models, certain key points 
must be taken into account: the functional form of the “uncured” 
survival must be specified; adequate survival functions must be 
equipped to catch high excess hazard during the initial time of 
diagnosis; skewed estimates must be avoided to converge when 
the cure ratio is 80 percent and above. Computational difficulties 
need to be taken into account, especially when using the gamma 
distribution, make less distributional assumptions.[1]

Comprehensively applying flexible parametric survival 
models mainly to estimate the cure proportion and for the survival 
of the “not cured” or “not free from disease” or “uncured” as “not 
restored to health” in a population could potentially solve these 
needs.[2] Flexible models of the parametric approach of survival for 
cure rate approaches were introduced and were further protracted 
systematically on the way to relative survival.[3,4]
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MAt e r I A l s A n d Me t h o d s
A total of 412 Tuberculosis (TB) patients were used which is 
recognized by the National Institute for TB Research-Indian 
Council of Medical Research, Chennai, India, to test the model and 
the data linked to Randomized Clinical Trial (RCT) time to data on 
TB sputum conversion. Accordingly, in this model, age with three 
categories is used for the study.

Cure rate models are survival models consisting of a cure 
fraction and an uncured fraction. Cure rate models to estimate the 
cure fraction was first developed for non-mixture cure rate model.[5] 
Later for mixture model were developed and it is also known as the 
standard cure rate model.[6] There are two types of cure rate model, 
mixture, and non-mixture. In the present study, the non-mixture 
parametric cure rate models were fitted and compared.

Relative Survival Function
The performance form of choice for researching survival of patient, 
especially in a population-based background is relative survival SR 
(t).[7] It is defined as observed (all-cause) survival or subsistence 
overall survival S (t) in the patients divided by expected survival 
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S* (t) in the theoretical common population demographic group 
equivalent to patients with age, gender and possible other 
covariates. The relative survival model is possible to write the 
overall survival as

  ( ) = * ( ) ( )RS t S t S t  (1)

The chance analog of relative survival is the excess hazard 
rate. The diagnosis of TB among patients is associated with two 
elements, namely, expected hazard, h* (t) and the excess hazard 
λ(t). Thus, the risk exposure or hazard h(t) is given by

  ( ) ( ) ( )= +*h t h t t  (2)

Here S (t) and h* (t)are believed to be recognized and are 
typically collected from routine data sources. One of the most 
widely used cure models in population-based cancer research is 
the mixture cure model.[8] The mixture cure model’s overall survival 
feature incorporating relative survival can be written as

  ( ) ( ) ( )π π= + −* ( )( 1 )uS t S t S t  (3)

It means that some proportion of patients, π, are treated as 
“cured” or completely recovered, while “uncured” or not recovered 
is the remainder, 1  - π. Su (t) is the “uncured” survival attributes 
unique to the disease and is estimated by the model along with 
the cure proportion. There is a need to choose a parametric 
distribution for Su (t) and a Weibull distribiution is sometimes 
used.[9]

Another parametric cure model used in population-based 
cancer research is the non-mixture cure model, which estimates 
the asymptotic survival function as the cure ratio. The survival 
function for the non-mixture model is given as

  ( ) π= ( )* ( ) F tzS t S t  (4)

where F Z (t) is a distribution function,a Weibull distribution 
can be used. The non-mixture model can be written as a mixture 
model as

 
  

( )( )π π= + −*S(t) ( ) 1S t  (5)

This helps to measure both the cure ratio and the survival 
of the “uncured” Both the cure proportion and the parameters 
in Su (t) or FZ (t) can be allowed to differ by covariates when 
modelling.

Flexible Parametric Survival Model
The versatile parametric survival model is built on the log 
cumulative excess hazard scale.[10] Using limited cubic splines to 
estimate the baseline cumulative excess hazard can be found by 
integrating equation (2) and is represented as

  ( ) ( ) ( )= + Λ*H t t  tH  (6)

where H(t) is the total cumulative hazard, the cumulative 
hazard predicted is H*(t) and the cumulative excess hazard is Λ(t). 
The reason for modelling on the log cumulative excess hazard scale 
instead of the log excess hazard scale is that a more stable function 
is the log cumulative excess hazard and its form is easier to capture. 
To model the accumulated excess hazard on the log scale,

  Λ = − =( ( ))  ( ( ))  (  ; )ln t ln lnS t s x  (7)
where x = ln(t) and s(x;γ0) is a restricted cubic spline function, 

defined as

 γ γ γ γ γ − −= + + +… +0 00 01 1 02 2 0 1 1(  ; )    ( )  ( )  .  ( )k ks x v x v x v x  (8)

where k is the number of knots and the jth basis function is 
defined as

  =1( )  v x x  (9)

( ) λ λ+ + += − − − − − − =3 3 3
 1  x ( ) ( ) (1  )( )   2, .., .,  –1 j j j j kv x k x k x k j k

 (10)
where k1 and kK the position of the first and last knot 

respectively and λj=(kK – kj)⁄(kK – k1)
All quadratic variables except the first one (v1, the linear 

variable) are zero up to the first knot. Hence, the log cumulative 
excess hazard is forced to be linear before the position of the 
first knot. The introduction of covariates z to equation (7) can be 
expressed as

 γ βΛ = − = +0( (  ; ))  (  (  ; ))  (  ; )  T
Rln t z ln lnS t z s x z  (11)

This is a proportional model of excess hazards with time-
dependent covariate effect model. These are extremely common 
and time-dependent effects typically do not need the baseline 
accumulated excess hazards. Fresh spline parameters are added 
for each time-dependent effect and different knot positions can 
be selected for a time-dependent effect for each new covariate zi 
and thus equation (11) becomes

 
γ β γ

=

Λ = +∑0
1

( ( ; ))  (  ; )   (  ; )
D

T
i i

i

ln t z s x z s x z  (12)

where D is the number of time-  dependent covariate effects 
and the quadratic function for the ith time-dependent impact is s(x;γi)

Flexible Parametric Survival Cure Model
In the cure rate parametric model, the excess risk rate is zero when 
“cure” is achieved and the accumulated excess hazard will be constant 
after this point. The relative survival function from the versatile 
parametric survival model with backward splines calculated and the 
linear spline variable parameter restriction (γ01=0) is defined as

( ) ( )γ γ γ − −= − + +…+00 02 2 0 1 1( ) exp( exp( ))R k kS t v x v x  (13)

which can be written as,

 
( ) ( )γ γπ − −+…+= 02 2 0 1 1exp( )( ) k kv x v x

RS t  (14)

where π γ= − 00  (  (  ))exp exp . In comparison to a non-mixture 
model, it is seen that the stable parametric cure model is a special 
case of a mixture cure model with

  π γ= − 00  (  (  ))exp exp  (15)

And

 γ γ − −= + +02 2 0   1   1( )  (   ( )  ...    ( ))z K KF t exp v x v x  (16)

As long as the excess mortality is not negative, FZ (t) is 
a distribution function is rather rare distribution, but for the 
non-mixture model, as long as no time-dependent effects are 
modelled. The flexible parametric cure model can be written 
as a proportional model of excess hazards when covariates are 
introduced in the following equation,

( ) ( ) ( )

( )

γ β γ

γ γ− −
=

= − +

+ +∑

00 02 2

0 1 1
1

; exp( (exp exp(

.. ) (  ; ) ))

T
R

D

k k i i
i

S t z z v x

v x s x z  (17)
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It is seen that the perpetual parameters γ00 and β have been 
used to model the cure ratio and the time-dependent parameters 
are now used to model the distribution function FZ (t). For each 
quadratic function s(x; γi) the model is constructed. The restriction 
of a zero effect for the linear quadratic term must be incorporated. 
Both quadratic variables take the value 0 from the point of the last 
knot. It means that the constant parameter γ00 in equation (17) is 
the log cumulative excess hazard for the comparison group at and 
even beyond the last knot to estimate the cure ratio.

re s u lts
In this section, the TB data is used to fit the flexible cure rate model 
and the results of the analysis are presented. The data collected 
from the National Institute for TB Research-Indian Council of 
Medical Research, Chennai, India, and the data linked to RCT and TB 
sputum conversion time to data is used to test the model. From the 
data, it is seen that all patients diagnosed with TB and patients who 
have converted from positive sputum smear to negative sputum 
smear called event and not experienced the event of interest or 
still alive and patients who have not to turn to the clinic during the 
treatment period were coined as censored. Among the total of 412 
TB patients, 33.5% are Female, 66.5% are Male and the combined 
mean (SD) of different age group is 32.75 (12.09) years were found 
using the descriptive analysis. The patient age at diagnosis of TB 
ranged from 14 to 70 years with the average sputum conversion 
time for a female is 3.49 months and for the male is 3.29 months. 
The maximum follow-up period was 12 months.

In this article, the relative survival, projected relative survival 
and survival of the non-converted (uncured) portion of the 
population using flexible parametric cure models were estimated 
for different age groups and gender. The different components 
of the fitted distributions using parametric survival cure models 
are compared using their deviations. For different age groups and 
gender time-based patterns of the converted proportion, average 
time to conversion and S.D time to conversion were calculated for 
the flexible parametric cure model. The model is compared with 
various flexible parametric cure models and the best fit for the 
sputum conversion is found. The predicted relative survival using 
various parametric cure rate survival functions for different age 
groups are also studied. The percentage of sputum conversion 
among TB patients by sex and gender are analysed and presented 
in Table 1.

From Table 1 it is found that among female lower age group 
(≤ 30 have experienced high conversion rate than compared to 
elder age group and also it is reflected among male. It is also found 
that when the age progresses the status of sputum conversion 
become slower for both the genders.

Accordingly in this study, the various flexible parametric 
cure rate models along the covariates with Akaike information 
criteria (AIC) are compared and presented in Table 2. It is modelled 
continuously with the covariates, namely, age, sex, treatment and 

weight of the patients. The two main effects and interaction effects 
between sex and age are also studied.

In Table 2, the TB data is fitted for cured patients using different 
life time distributions namely Weibull, Gamma, Exponential and 
Lognormal, by flexible parametric cure rate model. In all the 
models, cure fractions are estimated and compared it with their 
deviances. It is found that the Lognormal is the best fit as the 
estimated cure fraction and AIC are very smaller.

Figure 1 represents the prediction of sputum smear conversion 
rate using flexible parametric survival cure models, namely, 
Weibull, Gamma, Exponential, and Lognormal distributions.

It is found from Figure  1 that the Exponential distribution 
has the least conversion rate whereas the Lognormal has a higher 
conversion rate of sputum.

Similarly, for the sample as a whole and also for the non-
converted group (uncured) group, the cure fraction and median 
time to conversion for different age groups concerning treatment 
are estimated using Flexible parametric survival distributions, 
namely, Weibull, Gamma, and Lognormal distributions. These 
results for different age group concerning with the treatment in 
control and trial group are tabulated in Table 3.

Table 3 gives the estimation of cure fraction and median for 
the non-converted group by considering different age groups with 
the treatment in control and trail regimen using flexible parametric 
survival distributions. The estimation of the cure fraction might be 
responsive to the option of parametric distribution. The Sputum 
conversion rate for the treatment period has been fitted for 
Weibull, Gamma and Lognormal distributions concerning with 
age groups. It is inferred that the Exponential distribution did not 
provide a good estimate of the cure fraction.

The cure fraction for Lognormal distribution is very less 
compared with the other two distributions. The range of cure 
fraction of Lognormal distribution for the age under 30  years is 
0.07, for the age 31–42 is 0.14 and for the age above 43 is 0.11, 
respectively, for group.

The cure fraction of Gamma distribution for the age under 
30 years is 0.08, for the age group 31–42 is 0.16 and for the age 
above 43 is 0.13. The cure fraction of Weibull distribution for the 
age under 30 years is 0.12, for the age 31–42 is 0.14 and for the 
age above 43 is 0.15. By comparing the cure fractions of all the 
three distributions, it is found that in younger age group Weibull 
distribution is the best fit of sputum conversion rate in treatment 
period for the non-converted group.

The graphical representation of the estimated cure fraction 
prediction of all the life time relative survival distributions 
according to different age groups for the non-converted (uncured) 
group is presented in Figures 2 and 3, respectively. Figure 2 is for 
predicting relative survival for age group ≤ 30 and Figure 3 is for the 
same prediction concerning age group ≥ 43. With a horizontal solid 
reference line, the approximate cure fraction has been established. 
For the entire community, the relative survival curve could be seen 
on the line that continually approaches a given curve at the cure 
fraction reference line. For the uncured, the relative survival curve 
is the unconverted category that shifts virtually towards zero or at 
the bottom of the curve.

Figure  2 shows the prediction of expected relative survival 
of sputum smear conversion for the sample as a whole and also 
for the non-converted group with age group below 30. The cure 
fraction is highlighted by the horizontal reference line marking the 
portion between the relative survival as a whole and the relative 

Table 1: Baseline characteristics of patients by sex and age group for 
the time-related percentage of sputum conversion

Sex Age Group Converted % Mean_Time SD_Time
Female ≤ 30 92.0 2.65 1.693

31–42 86.7 3.00 2.623
≥ 43 75.0 1.33 0.516

Male ≤ 30 95.9 2.87 1.949
31–42 93.0 2.62 1.200
≥ 43 93.9 2.82 1.511
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Table 2: Comparison of flexible parametric cure models by Akaike Information Criteria (AIC) using parametric distributions with prospective 
analytical factors

Weibull
Est. LB95% UB95% SE Exp (Est) LB95% UB95% AIC

AGE 0.02 −0.01 0.05 0.02 1.02 0.99 1.05 1576.492
SEX_(Ref: M) −0.48 −1.48 0.52 0.51 0.62 0.23 1.69
Treatment_(Ref Cont) 0.77 −0.06 1.61 0.42 2.17 0.94 4.98
Weight_Base line −0.03 −0.10 0.05 0.04 0.97 0.90 1.05
DST_Ref: SENS −0.44 −1.92 1.05 0.76 0.65 0.15 2.86
GAMMA
AGE 0.02 −0.01 0.05 0.02 1.02 0.99 1.05 1521.28
SEX_(Ref: M) −0.48 −1.48 0.52 0.51 0.62 0.23 1.69
Treatment_(Ref Cont) 0.77 −0.06 1.61 0.42 2.17 0.94 4.99
Weight_Base line −0.03 −0.10 0.05 0.04 0.97 0.90 1.05
DST_Ref: SENS −0.44 −1.92 1.05 0.76 0.65 0.15 2.87
Exponential
AGE 0.02 −0.03 0.07 0.02 1.02 0.97 1.07 1735.408
SEX_(Ref: M) −0.58 −1.94 0.78 0.69 0.56 0.14 2.19
Treatment_(Ref Cont) 0.91 −0.33 2.15 0.63 2.48 0.72 8.55
Weight_Base line −0.06 −0.19 0.06 0.06 0.94 0.83 1.07
DST_(Ref: SENS) −0.78 −3.68 2.12 1.48 0.46 0.03 8.31
lognormal 
AGE 0.02 −0.01 0.05 0.02 1.02 0.99 1.05 1487.548#

SEX_(Ref: M) −0.48 −1.51 0.55 0.52 0.62 0.22 1.73
Treatment_(Ref Cont) 0.78 −0.07 1.64 0.44 2.19 0.93 5.15
Weight_Base line −0.03 −0.11 0.05 0.04 0.97 0.89 1.05
DST_Ref: SENS −0.44 −1.98 1.09 0.78 0.64 0.14 2.98
#Lowest AIC 

Figure 1: Prediction of sputum smear conversion rate using flexible parametric survival cure models with different distribution
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Table 3: Estimation of cure fraction and median for the non-converted group for different age groups concerning treatment using flexible 
parametric survival distributions

Age Weibull Gamma Lognormal
Treatment

Control_ Reg Trail_Reg Control_Reg Trail_Reg Control_Reg Trail_Reg
Cure Median Cure Median Cure Median Cure Median Cure Median Cure Median

≤ 30 0.12 2.46 0.09 2.38 0.08 2.35 0.08 2.35 0.07 2.32 0.07 2.32
31–42 0.14 2.51 0.10 2.43 0.16 2.54 0.10 2.41 0.14 2.55 0.08 2.38
≥ 43 0.15 2.54 0.12 2.46 0.13 2.48 0.12 2.45 0.11 2.47 0.10 2.43

Figure 2: Predicted relative survival using various parametric survival distributions for the sample as a whole and for the non-converted 
(uncured) group. (Age group equal to or below 30)

Figure 3: Predicted relative survival using various parametric survival distributions for the sample as a whole and the non-converted (uncured) 
group. (Age group ≥ 43)
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survival of the non-converted (uncured) group as a threshold 
for pinpointing in all distributions. For the uncured category, the 
relative survival curve is virtually heading toward zero as time 
progresses and for some distribution at exactly zero.

Figure 3 represents the prediction of estimated relative survival 
of sputum smear conversion for the entire sample and also for the 
non-converted (uncured) population by age group more than or 
equal to 43. With the horizontal reference line, the cure fraction 
is highlighted which is slightly high as it has been anticipated 
that a growing pattern of cure fraction rises as per age. For the 
uncured category, the relative survival curve is virtually heading 
toward zero as time progresses for all distributions. Furthermore, 
the prediction of cure fraction is double the time higher than the 
prediction of cure fraction for the younger age group (≤ 30).

co n c lu s I o n
In this study, the relative survival, projected relative survival and 
survival of the non-converted (uncured) group of the population 
using flexible parametric cure models were investigated for different 
age groups and gender. The flexible parametric cure rate models 
along with the covariates are fitted for TB data with AIC criteria. At this 
juncture, data are fitted for cured patients using various distributions, 
namely, Weibull, Gamma, Exponential and Log Normal, respectively. 
It is found that Log normal is the best fit as the estimated cure fraction 
and AIC are very smaller when compared with other distributions.

The prediction of the relative survival cure rate fraction using 
various parametric cure rate survival functions for the different age 
groups is studied. The percentage of sputum conversion among 
TB patients by age-group and gender is also analysed. The average 
time to conversion and standard deviation time to conversion was 
also calculated for the flexible parametric cure model.

The various prediction of sputum smear conversion rate 
using flexible parametric cure models with various distributions 
is analyzed and represented graphically. It is observed that the 

predicted relative survival using various parametric survival 
distributions for the different age groups.

In Table 3, it is estimated that the cure fraction rate and median 
for the non-converted group for different age groups ≤ 30, 31-42 
and ≥ 43 concerning treatment using flexible parametric survival 
distributions. In younger age group, the Weibull distribution has 
the best fit to sputum smear conversion rate in treatment period.

Overall, the flexible parametric cure model seems to provide 
a good fit for sputum conversion pulmonary TB data on the main 
factors of age and treatment over the entire follow-up period.
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