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reported. Liao et al. proposed the dominant LBP for texture 
classification.[6] Guo et al. developed the completed LBP scheme 
for texture classification.[7] LBP operator on facial expression 
analysis and recognition is successfully reported in Ahonen et 
al., and Zhao et al.[8,9] Li et al. proposed multiscale heat kernel 
based face representation, for heat kernels that perform well 
in characterizing the topological structural information of face 
appearance. Further, the LBP descriptor is incorporated into 
the multiscale heat kernel face representation for capturing 
texture information of face appearance.[10] Face recognition under 
different lighting conditions by the use of local ternary patterns 
(LTP) is discussed in Tan and Triggs[11] where emphasis lays on 
the issue of robustness of the local patterns. The background 
modeling and detection using LBP extended LBP for shape 
localization and LBP for interest region description have been 
reported in Heikkil et al., Huang et al., and Heikkila et al.,[12-14] 
respectively. Zhao et al. proposed the local spatiotemporal 
descriptors using LBP to represent and recognize spoken isolated 
phrases based solely on visual input.[15] Spatiotemporal LBPs 
extracted from mouth regions are used for describing isolated 
phrase sequences. Unay et al. proposed the local structure-based 
region of interest retrieval in brain magnetic resonance images 
(MRIs).[16] Yao and Chen proposed the local edge patterns (LEP) 
for texture retrieval[17] where LEP value is computed using an 
edge obtained by applying the Sobel edge detector to intensity 
gray level and then LEP feature is extracted to describe the spatial 
structure of the local texture according to the organization of the 
edge pixels in a neighborhood.

Main Contributions
The authors have bestowed the thrust for carrying out the 
experiments on the following:
1.	 The local mesh patterns (LMeP) operator is used for medical 

image segmentation.

INTRODUCTION

Motivation
Nowadays, a lot of medical images are available, and this data need 
to be stored for a particular time period to maintain the medical 
data about the patient. But with data medical hospitals are not 
getting any benefit from the storage. The retrieving system adopts 
feature database for matching so as to reduce the search space 
which is especially useful in a larger image database. Retrieval 
images are selected according to the closest similar measures 
computed by distance. In medical image segmentation, we will 
segment the certain regions for analysis purpose.

Initially, cluster-based medical segmentation like k-mean, fuzzy 
c-mans algorithms are proposed for medical image segmentation. 
In recent years, researchers using the feature based algorithms 
for medical image segmentation. Based on the literature, we 
motivated to work in the direction of medical image segmentation 
using feature descriptors.

Now, a concise review of the related literature available, targeted 
for development of our algorithms is given here. Local binary 
pattern (LBP) features have emerged as a silver lining in the 
field of texture retrieval. Ojala et al. proposed LBP[1] which are 
converted to rotational invariant for texture classification in 
based on Kullback discrimination of sample and prototype 
distributions is used. The classification results for single features 
with one-dimensional feature value distributions and for pairs 
of complementary features with two-dimensional distributions 
are presented.[2] Rotational invariant texture classification 
using feature distributions is proposed in study by Pietikainen 
et al.[3] The combination of Gabor filter and LBP for texture 
segmentation[4] and rotational invariant texture classification 
using LBP variance with global matching[5] has also been 
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2.	 Results are tested on benchmark medical image databases.

The organization of the paper is as follows: In section 1, a brief 
review of texture features for various applications is given. 
A concise review of LBPs and LMeP can be visualized in Section 2. 
Section 3, presents the proposed algorithm for medical image 
segmentation. Further, experimental results and discussions to 
support the algorithm can be seen in section 4. Conclusions are 
derived in Section 5.

LOCAL PATTERNS

LBPs
The LBP operator was introduced by Ojala et al.[1] for texture 
classification. Success in terms of speed (no need to tune any 
parameters) and performance is reported in many research 
areas such as texture classification,[1-7] face recognition,[8-11] object 
tracking, biomedical image retrieval, and fingerprint recognition.

Given a center pixel in the 3 × 3 pattern, LBP value is computed 
by comparing its grayscale value with its neighborhoods based 
on Equation (1) and Equation (2):
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Where I(gc) enotes the gray value of the center pixel, I(gi) is the 
gray value of its neighbors, P stands for the number of neighbors 
and R, the radius of the neighborhood.

Figure 1 shows an example of obtaining an LBP from a given 3 × 3 
pattern. The histograms of these patterns extract the distribution 
of edges in an image.[1]

LTP
Tan and Triggs[11] extended the LBP to three-valued code called 
LTP, in which gray values in the zone of width ± t around gc are 
quantized to zero, those above (gc + t) are quantized to +1, and 
those below (gc − t) are quantized to-1, i.e., the indicator f (x) is 
replaced with 3-valued function Equation (3) and binary LBP code 
is replaced by a ternary LTP code as shown in Figure 1.
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LTP can be found in An image feature named Local Triplet 
Pattern (LTP) is proposed for image retrieval applications. The 
LTP feature of an image is a histogram which contains spatial 
information among neighboring pixels in the image. An LTP level 
is extracted from each 3×3 pixel block. The color levels of the eight 
surrounding pixels are compared with the color level of the center 
pixel. The comparison returns one of the triplet codes: 0, 1, or 2 
to represent the three conditions: the color level of a neighboring 
pixel is smaller than, equal to, or larger than the color level of the 

center pixel. The eight triplet codes from the eight surrounding 
pixels are then transformed to an LTP level. We also consider 
extracting the LTP from a quantized color space and at different 
pattern length according to the application needs. Experimental 
results show that our proposed LTP histogram consistently 
outperforms other histograms with spatial information on both 
the texture and generic image datasets.[17]

After computing the LP (LBP or LTP) for each pixel (j,k), the 
whole image is represented by building a histogram as shown 
in Equation (4).
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Where the size of input image is N1 × N2.

LMeP
The idea of the LBP has been motivated us to propose the LMeP 
for biomedical image retrieval. The LMeP value is computed based 
on the relationship among the surrounding neighbors for a given 
center pixel in an image Equation (3). Figure 1 illustrates the LMeP 
values calculation for a given 3 × 3 pattern.[18]

Figure 1: Example of obtaining local binary pattern and local ternary 
patterns for the 3 × 3 pattern

Figure 2: The local binary pattern and the first three local mesh patterns 
calculations for a given (P, R)
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Where, j represents the LMeP index and mod (x, y) returns the 
reminder for x/y operation.

From Equation 6 it can be observed that the possible LMeP patterns 
for P neighbors are P/2. In this paper, we consider only first three 
LMeP patterns (j=1, 2, 3 in Equation (6)) for experimentation as 
shown in Figures 1 and 2. Figure 2 illustrates the LBP and the first 
three LMeP calculations for a given (P, R). In this paper, (8.1) (16.2) 
and (24.3) combinations are considered for experimentation.

For the local pattern with P neighboring pixels, there are 2P (0–2P−1) 
possible values for both LBP and LMeP, resulting in a feature vector 
of length 2P. A high computational cost is involved in extracting 
such a feature vector. Thus, uniform patterns [19] are considered 
to reduce the computational cost. A uniform pattern refers to a 
circular binary representation having limited discontinuities. In 
this paper, patterns with two or less discontinuities in the circular 
binary representation are termed as uniform while rest of the 
patterns are termed as non-uniform. Thus, the distinct uniform 
patterns for a given query image would be P(P−1)+2. The possible 
uniform patterns for P = 8 can be seen in Figure 2.[19]

After identifying the local pattern, PTN (the LBP or the first three 
LMePs) the whole image is represented by building a histogram 
using Equation (4).
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Where, N1 × N2 represents the size of input image.

Figure 2 illustrates the feature maps obtained by applying the 
LBP and the first three LMePs operators on referenced MR image. 

The experimental results demonstrate that the proposed LMeP 
shows better performance as compared to LBP, indicating that 
it can capture more edge information than LBP for biomedical 
image retrieval.

PROPOSED SEGMENTATION ALGORITHM

Proposed System Framework
Algorithm:
Input: Image; Output: Retrieval result:
1.	 Load the grayscale image.
2.	 Calculate the LMeP features from an image.
3.	 Divide the LMeP map into subblocks.
4.	 Apply the similarity between the subblocks.
5.	 Based on the similarity merge the subblocks.
6.	 Form the regions (segments) for final segmentation.

Block Matching
Feature vector for block-1, Q is represented as fQ = (fQ1, fQ.....fQLg

) 
fQ = (fQ1, fQ1,.....fQLg

)  obtained after the feature extraction. Similarly, 
block-2 feature vector fDBi

 = (fDBil
, fDBil

,.....fDBiLg
); i=1,2,.....|DB|. The 

goal is to select n best blocks that resemble the same region.

To match the subblocks, we used d1 similarity distance metric 
computed by Equation (9).

Figure 3: Segmentation results of proposed method

Table 1: Comparison of various techniques in terms of score on image  (a) at different Gaussian noise
Method Gaussian noise  (%)

5 10 15 20
Cl‑1 Cl‑2 Cl‑3 Cl‑1 Cl‑2 Cl‑3 Cl‑1 Cl‑2 Cl‑3 Cl‑1 Cl‑2 Cl‑3

LBP 0.66 0.79 0.86 0.58 0.72 0.81 0.53 0.69 0.80 0.49 0.65 0.78
LMeP 0.68 0.82 0.88 0.59 0.74 0.84 0.56 0.72 0.82 0.53 0.68 0.81
Cl: Cluster, LBP: Local binary patterns, LMeP: Local mesh patterns

Table 2: Comparison of various techniques in terms of score on image  (b) at different Gaussian noise
Method Gaussian noise  (%)

5 10 15 20
Cl‑1 Cl‑2 Cl‑3 Cl‑1 Cl‑2 Cl‑3 Cl‑1 Cl‑2 Cl‑3 Cl‑1 Cl‑2 Cl‑3

LBP 0.73 0.80 0.87 0.58 0.66 0.80 0.54 0.69 0.80 0.51 0.66 0.78
LMeP 0.78 0.84 0.89 0.59 0.68 0.82 0.58 0.74 0.83 0.54 0.67 0.80
Cl: Cluster, LBP: Local binary patterns, LMeP: Local mesh patterns
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Where fDBji is ith feature of jth image in the database |DB|.

EXPERIMENTAL RESULTS AND 
DISCUSSION

To verify the effectiveness of the proposed algorithm, experiments 
were conducted on two brain magnetic resonance images 
(MRIs).[19] The performance of the proposed algorithm is 
compared with the other existing FCM variant methods in terms 
of score, number of iterations (NI) and computational time on 
open access series of imaging studies-MRI dataset.

Figures 3 and 4 illustrate the segmentation results of the 
proposed algorithm. Tables  1-6 illustrates the results of the 
proposed algorithm for image segmentation. The results after 
being investigated, the proposed method outperforms the other 
existing method in terms of score, number of iterations, and time 
on benchmark database.

CONCLUSIONS

A novel methodology based on feature descriptors is proposed 
for medical image retrieval application. For feature extraction 
LMeP is used and then merging of subblocks concept is used for 
segmentation. The performance of the proposed method is tested 
on benchmark database. The results after being investigated 
proposed method outperform the other existing methods in terms 
of segmentation score.
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