A report on the quality control parameters of *Cressa* cretica Linn., Convolvulaceae

Priyanka Bhardwaj^{1,2}, Sangeeta Rani², Santosh Kumar Verma^{1*}

¹Department of Pharmacy, Faculty of Pharmaceutical Sciences, Motherhood University, Roorkee, Hardwar, Uttarakhand, India, ²Department of Pharmacy, SD College of Pharmacy & Vocational Studies, Muzaffarnagar, Uttar Pradesh, India

ABSTRACT

Introduction: The present study was aimed at pharmacognostical, phytochemical, and pharmacological evaluation of *Cressa cretica Linn.*, (fruit) family - *Convolvulaceae*. **Materials and Methods:** Pharmacognostical investigation was carried out by performing organoleptic, microscopical, and physicochemical evaluation, i.e., ash values, extractive values, moisture content, swelling index, foaming index, and foreign matter. The obtained results showed that the moisture content was found to be 2.25%. Similarly, swelling index was recorded to be o.8 cm. Foaming index (<100). Phytochemical investigation included successive Soxhlet extraction, the obtained extractive values were 1.25%, o.05%, 5.25%, 29%, and 22.80% for petroleum ether, chloroform, ethyl acetate, ethanol, and distilled water, respectively. The preliminary qualitative phytochemical screening revealed the presence of carbohydrates, phenolic compounds, alkaloids, glycosides, flavonoids, steroids, fixed oils, and fats. **Results:** Pharmacological investigation included the analgesic activity using *C. cretica* (fruit) plant ethyl acetate extract when subjected to Eddy's Hot Plate Model. The obtained results for analgesic activity of *C. cretica* (fruit) plant ethyl acetate) (100 mg/kg and 200 mg/kg) were found positive.

Key words: Cressa cretica, fruit, screening

INTRODUCTION

Cressa cretica L. (Convolvulaceae) is known as "Rudravanti" in Hindi. It is a widely grown halophytic plant. Different parts of the plant have been claimed to be valuable in a wide spectrum of diseases.^[1,2] The plant is traditionally used in Bahrain as expectorant and antibilious agent.^[3] Dry leaves of *C. cretica* crushed with sugar are used as emetic in Sudan.^[4]

In spite of several advancements in the field of clinical and pharmaceutical investigations have, in fact, elevated the status of medicinal plants by identifying the role of active principles present in them.^[5] C.cretica is a plant that is referred to by the name that reflects the features of *Sanjeevani*. Hence, this plant is commonly known in Sanskrit as *Sanjeevani* as it prolongs the life and prevents the onset of old age.^[6-8]

MATERIALS AND METHODS

Plant Material

The dried fruit part of the plant *C. cretica Linn.* was collected from FRLHT Bangalore (India) in September 2015 and authenticated by Dr. Devendrakumarpanday, Assistant Professor, Domain of Botany, Department of Biotechnology and Dr. Udai Chand Agrahari, Assistant Professor, Domain of Pharmacognosy, Department of Pharmaceutical Science, Lovely Professional University Jalandhar - Delhi G.T. Road (NH-1), Phagwara, Punjab,

India - 144 411, at December 16, 2015. The plant material was further size reduced and stored until further use in an airtight container. Fresh plant material was obtained for the macroscopical and microscopical evaluation.^[9]

Macroscopic and Microscopic Analysis

The macroscopy and microscopy of the plant was studied according to the methods of Khandelwal; the cross sections were prepared and stained. The microscopic analysis of powder was done according to the method of brain and tumor.^[8,10-12]

Physicochemical Analysis

Physicochemical parameters such as the total ash, acid-insoluble ash, water-insoluble ash, and moisture content were determined as per reported methods. Anonymous Indian pharmacopeia 1996 considering the diversity of chemical nature and properties of contents of drugs, five different solvents were used for the determination of extractive values as per reported methods by Chopra. Fluorescence analysis of the extract was carried out by the method of Evans.^[11,12,13]

Preliminary Phytochemical Screening

Preliminary phytochemical screening was carried out using standard procedure described by Kokate *et al.* Phytochemical investigation included separation of compounds by thin-layer chromatography by Kaur.^[14]

Address for correspondence:

Santosh Kumar Verma, Faculty of Pharmaceutical Sciences, Motherhood University, Roorkee, Hardwar, Uttarakhand, India. E-mail: verma2us@gmail.com

Received: 02-01-2018 Revised: 31-01-2018 Accepted: 20-03-2018

RESULTS AND DISCUSSIONS

Macroscopic Characters

Fruit is capsular, ovoid, unilocular, 3-6 valved, usually 1 seeded, seeds 3–4 mm long, glabrous and smooth and shining to reticulate, dark brown in color, characteristic in taste and having pleasant odor.

Microscopic Characters Fruit

Transverse section of the fruit passing through collenchyma generally appears oval or polygonal. Lignified parenchymatous cells of mesocarp found associated with the fibrous tissue. The remaining vittae comprise yellowish-brown fragments with fine cracks and look like broken glass. Moreover, a single ridge of vascular bundle raphe appears in the middle of commissural surface clearly seen in the section [Figure 1].

In longitudinal section, a longitudinally elongated, 120–190 μ long and 14–17 μ wide, thick walled, pitted, and very small lumen structure founded as sclerenchyma [Figure 2b].

Powder Microscopy

Powder microscopy showed colorless oil globules, polyhedral structure endosperm [Figure 3a]. A thin walled, few colorless, and few colored with reddish-brown matter and wavy cells are cork cells [Figure 3a]. Starch grains were also seen in the powder microscopy. These are simple oval or rounded in shape and about 2-4 to $10-20 \mu g \log [Figure 3a]$. A sieve tube-shaped structure of companion cells was seen in preparation [Figure 3b]. Annular

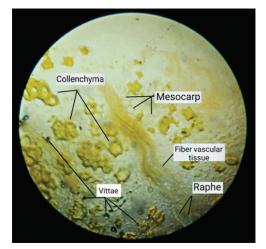
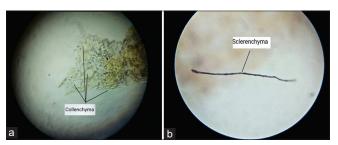
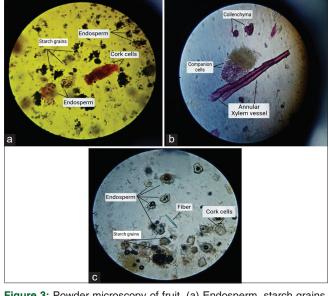


Figure 1: Transverse section of fruit. Collenchyma, mesocarp, fiber vascular tissue, vittae, raphe




Figure 2: Longitudinal section of fruit. (a) Collenchyma (b) Sclerenchyma

xylem vessel also seen in this section which is in the form of rings placed more or less at equal distance from each other [Figure 3b]. The preparation also showed lignified, thickened yellow walls with crystal sheath of parenchymatous cells are fibers [Figure 3c].

Physicochemical Analysis

Ash value showed the inorganic calcium, iron, carbonates, and phosphates present in fruit of *C. cretica Linn*. On the basis of the different ash values of the plant, it was concluded that acid-insoluble ash value was found to be the highest (18%), while water-soluble ash was lowest (7%) [Table 1]. About 80 g of the crude drug powder was subjected for Soxhlet extraction. Ethanol and ethyl acetate were shown high extractive value [Table 2].

The foreign organic matter value of the plant drug lied within the limits and it was free from dust, molds, and extraneous matter [Table 3]. The moisture content was calculated through loss on drying method and was found to be 2.25% [Table 4]. The swelling

Figure 3: Powder microscopy of fruit. (a) Endosperm, starch grains, cork cells. (b) Collenchyma, companion cells, annular xylem vessel. (c) Fibers collenchyma

Table 1: Ash values of Cressa cretica Linn.		
Test	Percentage (%w/w)	
Total ash	18	
Acid-insoluble ash	13	
Water-soluble ash	7	
C. cretica: Cressa cretica		

Table 2: Extractive values of Cressa cretica Linn.in different solvents

Solvent	% value (w/w)	Consistency
Pet. ether	1.25	Brown
Chloroform	0.05	Brown
Ethyl acetate	5.25	Brown
Ethanol	29	Brown
Aqueous	22.80	Brown

C. cretica: Cressa cretica

and foaming index values were recorded to be 0.8 cm and <100, respectively [Tables 5 and 6].

Preliminary Phytochemical Screening

The phytochemical profiling of the plant revealed the presence of alkaloids and flavonoids. This serves as an important tool for the quality assurance of plant for future studies. The fluorescence analysis is a tool for the determination of constituents in the plant that gives a definite idea of the chemical nature. The fluorescence characteristics of the powder when treated with various chemical reagents have been extensively studied in different wavelengths

Table 3: Foreign organic matter of plant Cressa cretica

Parameter	% yield (w/w)	
Foreign organic matter		
C. cretica: Cressa cretica		

Table 4: Moisture content of Cressa cretica			
Parameter	% value (w/w)		
Moisture content	2.25		
C. cretica: Cressa cretica			

Table 5: Swelling index of Cressa cretica		
Parameter	Value (cm)	
Swelling index	0.8	
C. cretica: Cressa cretica		

Table 6: Foaming index of Cressa cretica

Parameter	Value
Foaming index	<100
C. cretica: Cressa cretica	

Table 7: Fluorescence analysis fruit powder of Cressa cretica Linn.

Treatment	Short UV	Long UV	Daylight
	light	light	
Drug powder	Green	Black	Brown
Drug powder+1N HCl	Faint green	Dark green	Brown
Drug powder+1N H2SO4	Dark Purple	Blackish purple	Dark pink
Drug powder+1N HNO3	Blackish	Yellowish green	Brown
Drug powder+Picric acid	Black	Black	Reddish brown
Drug powder+5% FeCl3	Black	Dark green	Dark brown
Drug powder+lodine	Green	Brown	Brown
Drug powder+GAA	Dark blue	Blackish	Blackish

C cretica: Cressa cretica UV: Ultraviolet

(254 nm and 366 nm). This analysis of the drug powder was carried out and data are presented in Table 7.

CONCLUSION

C. cretica Linn., a halophyte plant commonly known as Rudravanti, however, is a controversial name, and hence, a well-established quality control and identification parameters are highly essential for the plant. In this paper, the macroscopical and microscopical findings will lay down the standards which will be useful for the detection of its identity and authenticity.

REFERENCES

- 1. Saxena HO, Brahmam M. The Flora of Orissa. Bhubaneswar, Orissa: Capital Business Services and Consultancy; 1995.
- Prajapati ND, Purohit SS, Sharma AK, Kumar T. A Handbook of Medicinal Plants, a Complete Source Book. Jodhpur: Agrobios Ltd., India; 2007.
- 3. Macdonald HG. A Dictionary of Natural Products. Medford: N.J.7 Plexus Publishing; 1997.
- 4. Dutta SC. Medicinal Plants. New Delhi: National Council for Education Research and Training; 1973.
- 5. Warrier PK, Nambier VP, Ramankutty C. Indian Medicinal Plants a Compendium of 500 Species. New Delhi, India: CSIR: 2005.
- Rizk AM, El-Ghazaly GA. Medicinal and Poisonous Plants of 6. Qatar. Qatar: Scientific and Applied Research Centre, University of Oatar: 1982.
- 7. Ganeshaiah KN, Vasudeva R, Shankar RU. In search of Sanjeevani. Curr Sci 2009;97:484-9.
- Khandelwal KR. Practical Pharmacognosy Techniques and 8. Experiment. Pune: Niraliprakashan; 2015. p. 13.6-8.9.
- Brain KR, Turner TD. In the Practical Evaluation of 9. Phytopharmaceuticals. Bristol: Wright Scientechnica; 1975b. p. 36-45.
- 10. Anonymous. Indian Pharmacopeia. Vol-II. New Delhi: Government of India Ministry of Health and Family Welfare, Controller of Publications; 1996. p. A-54-57, 74-76.
- 11. Chopra RN, Nayer SL, Chopra IC. Glossary of Indian Medicinal Plant. New Delhi: Council of Scientific and Industrial Research; 1956. p. 56-67.
- 12. Evans WC. Pharmacognosy. 15th ed. Edinberg: W.B. Sounder Publication; 2002. p. 43-57.
- 13. Kokate CK. Practical Pharmacognosy. Ist ed. New Delhi: Vallabh Prakashan; 1986. p. 11.
- 14. Kaur H. Chromatography. 3rd ed. Meerut: Pragati Prakshan, Educational Publishers; 2012. p. 31-64.

How to cite this Article: Bhardwaj P, Rani S, Verma SK. A report on the quality control parameters of Cressa cretica Linn., Convolvulaceae, Asian Pac. J. Health Sci., 2018; 5(1):139-141.

Source of Support: Nil, Conflict of Interest: None declared.